EXPONENTIAL GROWTH AND DECAY

Math 130 - Essentials of Calculus

28 October 2019

Math 130 - Essentials of Calculus

Exponential Growth and Decay

28 October 2019 1 / 10

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

1000(1+0.05) = 1000(1.05)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

1000(1+0.05) = 1000(1.05)

and after two years

 $[\$1000(1.05)](1.05) = \$1000(1.05)^2.$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

1000(1+0.05) = 1000(1.05)

and after two years

```
[\$1000(1.05)](1.05) = \$1000(1.05)^2.
```

Generally, after t years, the investment has a value of

 $(1.05)^t$.

Math 130 - Essentials of Calculus

Exponential Growth and Decay

28 October 2019 2 / 10

ノ周 トン モトン モト

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

1000(1+0.05) = 1000(1.05)

and after two years

```
[\$1000(1.05)](1.05) = \$1000(1.05)^2.
```

Generally, after t years, the investment has a value of

 $(1.05)^t$.

Similarly, it is possible to look at something whose value shrinks at a constant percentage: for example, say the value of a \$20000 car decreased by 15% per year, then the value after the first year would be

```
20000(1 - .15) = 20000(0.85)
```

and after t years it would be worth

Math 130 - Essentials of Calculus

 $COOOOOOOO OE^t$ Exponential Growth and Decay

EXAMPLE

EXAMPLE

A rare sculpture was purchased for \$11.8 million and its value is expected to increase 14% per year.

- Write an equation for the function that gives the value of the sculpture after t years.
- What is the value of the sculpture after 3.25 years?
- Ifter how many years will the sculpture be worth \$20 million?

Now You Try It!

EXAMPLE

The eagle population in a state park is currently 1650 but is expected to decrease 18% per year.

- Write an equation for the function that gives the number of eagles in the park t years from now.
- Obtermine the time required for the population to be reduced to 1000.
- **3** What is the rate of change of the population after four years?

Compound Interest

If a savings account earns an annual interest rate of r (expressed as a decimal, not a percentage), then the future value of the account after t years with an initial investment of P dollars would be

$$A(t)=P(1+r)^t.$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Compound Interest

If a savings account earns an annual interest rate of r (expressed as a decimal, not a percentage), then the future value of the account after t years with an initial investment of P dollars would be

$$A(t)=P(1+r)^t.$$

More typically, you will have a compounding period of less than a year, such as monthly or quarterly. If the compounding happens *n* times per year (e.g., n = 4 for quarterly compounding), then the interest rate per quarter will be given by $\frac{r}{n}$, where *r* is still given as a yearly rate. In this case, the future value after *t* years will be

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$

Math 130 - Essentials of Calculus

Exponential Growth and Decay

Compounding Continuously

It is also possible to increase the compounding to happen at every instant of time, which would correspond to taking the limit as $n \to \infty$.

$$\lim_{n \to \infty} A(t) = \lim_{n \to \infty} P\left(1 + \frac{r}{n}\right)^{nt}$$
$$= \lim_{n \to \infty} P\left[\left(1 + \frac{r}{n}\right)^{n/r}\right]^{rt}$$
$$= P\left[\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^{n/r}\right]^{rt}$$
$$= P\left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$= Pe^{rt}$$

Exponential Growth and Decay

・ 何 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

EXAMPLE

If \$3000 is invested at 5% interest, find the value of the investment if interest is compounded

- annually
- Quarterly
- o monthly
- continuously

How long will it take for the value of the investment to double if the interest is compounded quarterly?

• • • • • • • •

EXPONENTIAL GROWTH

In the situation where a quantity changes at a constant percentage rate, we can model the situation with a *differential equation*:

 $A'(t) = k \cdot A(t)$

which says that the rate of change in *A* is equal to *k* times *A*.

EXPONENTIAL GROWTH

In the situation where a quantity changes at a constant percentage rate, we can model the situation with a *differential equation*:

$$A'(t) = k \cdot A(t)$$

which says that the rate of change in A is equal to k times A. The solution to this differential equation is given by

$$A(t) = Ce^{kt}$$

where C is the *initial value* or initial quantity. k represents the *relative growth rate*.

EXPONENTIAL GROWTH

EXAMPLE

A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour, the population has increased to 420.

- Ind the relative growth rate.
- I Find an expression for the number of bacteria after t hours.
- Sind the number of bacteria after three hours.
- Ind the rate of growth after three hours.
- When will the population reach 10,000?

Math 130 - Essentials of Calculus

Exponential Growth and Decay

28 October 2019

9/10

Now You Try It!

EXAMPLE

The half-life of the radioactive material cesium-137 is 30 years. Suppose we have a 100mg sample.

- Find the relative decay rate.
- **2** Write a formula that gives the mass that remains after t years.
- 3 How much of the sample remains after 100 years?
- After how long will only 1 mg remain?
- At what rate is the mass decreasing after 100 years?

Math 130 - Essentials of Calculus

Exponential Growth and Decay

28 October 2019

10 / 10